July 2003, Vol.18, No.4, pp.484—494

J. Comput. Sci. & Technol.

CAFISE: An Approach to Enabling Adaptive Configuration
of Service Grid Applications

HAN YanBo (§#&)f), ZHAO ZhuoFeng (X I%), LI Gang (Z= M), XING DongShan (Jif 4 LL),
LV QingZhong (E JKH), WANG JianWu (F# 1), XIONG JinHua (FE474E) and LIU Hao (XI|3i)

Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100080, P.R. China
E-mail: yhan@ict.ac.cn
Received December 26, 2002; revised May 28, 2003.

Abstract Aiming at building up more powerful, open-standard-based and generic infras-
tructures for application integration, service grids address the challenges in large-scale coordinated
sharing and on-demand composition of network-based application services. The related endeavors
have opened up new ways of application development, deployment and integration. In connection
with the new level of scale, openness and dynamism brought forward by service grids, adaptive
service configuration is of essential importance to applications. This paper proposes an approach
called CAFISE, which tries to better facilitate on-demand configuration and dynamic reconfigura-
tion of service grid applications. In CAFISE, a business design and its supporting software system
are considered in a coherent way, and a convergent relation, which helps to map business-level
configurations to software-level configurations, is highlighted. The paper is particularly devoted
to presenting and discussing the principles, reference model, modeling language and supporting
application framework of CAFISE. Since practical usefulness is highly valued in the development
of CAFISE, the application of the approach to a real-world scenario is also presented in the paper.

Keywords service grid, on-demand service configuration, dynamic service reconfiguration,

convergent modeling, adaptive application framework

1 Introduction

It has been widely realized that traditional
Internet-based applications have not taken full ad-
vantage of the Internet infrastructure. With tech-
nological and social advances, some new develop-
ments can be observed. Large collections of compu-
tational and information resources are made avail-
able as services and can flexibly be utilized over
the Internet. On the other hand, our modern so-
ciety tends to depend on more agile, diverse and
integrated value chains that can be formed by as-
sembling these dispersed services. The striving goal
of engineering Internet-based applications has thus
shifted to locating, incorporating, adapting and in-
tegrating distributed and heterogeneous resources
to satisfy diverged and personalized requirements
of organizations and individual users.

Aiming at realizing large-scale, coordinated re-
source sharing in a wide-area network, grid com-
puting technologies!*? are among the most promi-
nent advances toward next-generation Internet-
based applications. Grid computing originated

from high-performance scientific computing field
and is evolving into enabling technologies with
a wider spectrum from computational grids to
higher-level platform technologies, such as service
gridsl®4]. Here, service grids refer to the open com-
puting infrastructures that enable easy plug-in and
deployment of individual and dispersed services,
interoperation of heterogeneous services, dynamic
formation of virtual and collaborative service as-
semblies, as well as on-demand composition of ser-
vices. We then call the applications based upon
such infrastructures as service grid applications.
Service grids help to open up new ways of appli-
cation development and deployment. In connection
with the new level of scale, openness and dynamism
brought forward by service grids, system flexibility
and adaptability become more critical. We know
that changes of computer applications are often un-
avoidable and tend to become more frequent as the
scale of application systems increases. However,
an old but not yet well-resolved problem is that
the side effects of changes in business-level require-
ments or business policies are un-proportionally

This work is supported by the National Natural Science Foundation of China under Grant No.60173018, the Young
Scientist Fund of ICT under Grant No.20026180-22, and the Key Scientific and Technological Program for the Tenth

Five-Year Plan of China under Grant No.2001BA904B07.

HAN Y B et al.: Approach to Enabling Adaptive Configuration of Service Grid 485

amplified in the underlying software systems. That
is, a minor change in a business may cause a great
deal of change efforts in its software system. In a
grid environment, the border and the constituent
parts of an application system are no longer so
fixed as in traditional software systems due to the
above-mentioned openness and dynamism. To sum
up, on-demand access to and dynamic integration
of distributed services have become a key issue in
constructing next-generation Internet-based appli-
cations. Adaptable service orchestration, versatile
business policy specification, and flexible configura-
tion management are hereon some of the key prob-
lems to be dealt with in a grid-based environment.

As a matter of fact, solutions for making com-
puter applications to adapt reactively and some-
times proactively to changes of the businesses they
support have been sought for years. Many use-
ful technologies, including object-oriented tech-
nologies, workflow technologies and some others,
have been invented. However, the flexibility at-
tained with these modern technologies is often mit-
igated greatly after the implementation or compila-
tion stage. Concerning on-demand configuration of
Internet-based information systems, the problems
we are facing are even more complicated, and ef-
fective and systematic approaches are still far away
from mature. This paper re-addresses the old flex-
ibility problem in the above-mentioned new setting
and presents an approach called CAFISE (Conver-
gent Approach for Information System Evolution).
It is organized as follows. Firstly, a brief overview
of the CAFISE approach is given in Section 2. Sec-
tion 3 discusses the CAFISE model, the CAFISE
language and some modeling principles. Section 4
describes an application framework, which helps to
construct and reconfigure a service grid application
on the basis of the CAFISE model. Section 5 ex-
amines a case study and briefly describes how to
construct and reconfigure an application with the
CAFISE approach in practice. Finally, some con-
cluding remarks are given in Section 6.

2 Rationales of the CAFISE Approach

An information system or an application system
in general is developed to support a certain busi-
ness. In the traditional way of information system
development, business models are derived based on
business analysis results first. It is software archi-
tects who then transform business models into soft-
ware architecture models, either explicitly or im-
plicitly. Based on the resulting software architec-

ture models, individual applications are developed
by software engineers. So far, so good. However,
there exists a conceptual gap between the busi-
ness domain and the software domain as shown in
Fig.1. As mentioned earlier, changes in businesses
take place frequently. In order to reflect and keep
up with business changes, their underlying soft-
ware systems are subject to frequent changes. As
a common practice, when confronted with changes
in requirements and technology updates, applica-
tion developers try to modify the existing software
systems and make patches to them. Over time and
as the number of patches and modifications reaches
a certain limitation, complexity sharply increases,
the original structure is destroyed and becomes in-
consistent, and at last the software system reaches
its life-end at a young age. One of the main reasons
is that since software architecture models are based
on previous business models, mismatches may come
forth when business models are changed while soft-
ware architecture models remain the same. With
the presence of such mismatches, it is difficult and
risky to modify an existing software system. The
domain gap has been a main impediment for soft-
ware systems to keep pace with the changing busi-
nesses in time. In a service-grid-enabled environ-
ment, this problem is even more crucial due to the
openness and dynamism. In addition to the prob-
lems of change and adaptation, service-grid-based
applications also need to handle the requirements
of just-in-time application construction on the ba-
sis of user’s spontaneous requirements.

With the paradigm shift towards grid-based
computing, an application can be seen as a spon-
taneous configuration of its constituent compu-
tational and information resources. By explic-
itly separating configuration schemas from applica-
tions, we obtain a separate layer of abstraction for
the sake of flexibility. Different configurations cor-
respond to different applications. A lot of research
efforts have been made to study various strate-
gies of application configuration to facilitate adap-
tive changes to applications!®6. Oreizy employed
software architecture models to specify application
configurations, and used an architecture descrip-
tion language (ADL) to directly describe the con-
figuration models("®/. As such, application config-
uration can be specified in terms of an architecture
model. Software architecture is used to support ap-
plication reconfiguration at runtime. Shrivastava
also proposed to use software architecture models
to support dynamic application reconfiguration!®!.
In [10], Warren presented a specialized model for

486

Business

changes

Business Domain

Requirement,

—>

Domain Gap

Software Domain

Qoo

Application systems

J. Comput. Sci. & Technol., July 2003, Vol.18, No.4

Requirement,

changes
Or-

o . B
/___._V————f—"\———/'j"_'\‘/

Remaining
unchanged!

Architecture

@l

Fig.1. Model mismatches in the traditional way of information system development.

application configuration, paying particular atten-
tion to maintaining application’s consistency in
performing dynamic reconfiguration. Both struc-
tural constraints and behavioral information are
captured in the configuration model. Although
the above-mentioned efforts can help to ease ap-
plication (re)configuration, they only focus on the
concepts and mechanisms of the software domain.
In fact, the majority of change requirements come
from the business domain. FEffective approaches
to keeping software systems updated in accordance
with new business requirements are not yet mature.
On-demand application configuration and dynamic
reconfiguration that are required in a service-grid-
enabled environment are still difficult to achieve.
Taylor brought forward the concept of con-
vergent engineering in 1995 for bridging the gap
between the business domain and the software
Convergent engineering promotes an
integrated approach to designing more flexible soft-
ware that can better cope with business changes.
It is considered as a good foundation for just-in-
time application construction and on-demand ad-
justment on user’s behalf. The essential idea is to
treat a business design and its supporting software
as a whole. In [12], Hubert reified the concept of
convergent engineering and built a convergent soft-
ware architecture directly reflecting some business-
level concepts in an object-oriented manner. How-
ever, constructing business objects that can reflect
both business perspective and software perspective
coherently is still a complicated undertaking and
remains the job of software professionals. But it
is business experts who need a feasible way to ex-
press their new demand. An object-oriented con-
vergent design is often difficult for them to master.
Moreover, dynamic application reconfiguration is
not thoroughly explored in previous researches.

domain!1],

From a user-centric perspective, the CAFISE
approach is intended to help a business user to
build his or her own personalized and situation-
specific application by configuring available ser-
vices in terms of personal preference and business-
related process logic. The focus is on facilitating
business-user-oriented and just-in-time configura-
tion, and dynamic reconfiguration of service grid
applications. In order to enable business people
to perform on-demand configuration of service grid
applications, business designs and application im-
plementations are considered in a convergent way.
CAFISE allows a business expert to transparently
examine all scattered resources that are accessible
and available to him or her and to configure them in
an easy and straightforward manner. The advan-
tage lies in that business people, to some extent, no
longer have to rely on software professionals when-
ever they have change net requirements for changes.

Fig.2 illustrates the central idea of CAFISE.
We coined the term power user to highlight the
user-end programming. A power user is a business
user who is capable of configuring his business ap-
plications with proper tool support but knows lit-
tle about software programming. CAFISE aims at
supporting power users in (re)configuring a service-
grid-enabled application on their demand. We call
the process, with which a power user configures his
or her application, as user-end programming. In-
stead of directly introducing object-oriented con-
cepts and technologies into the business domain as
in [12], we propose to build a convergent model
— the CAFISE model — to cover business issues
and software issues simultaneously. It has three re-
lated parts: a business-level model, a software-level
model and a convergent relation as glue. Business-
level models are designed to reflect business re-
quirements with a minimum set of user-end pro-

HAN Y B et al.:

gramming concepts and mechanisms, which are
easy for a power user to understand and mas-
ter. A power user can (re)configure service grid
applications by building or editing business-level
models. Software-level models are abstractions of
service composition. Based on network-based au-
tonomous services, service composition is seen as a
new paradigm to construct an application by ag-
gregating services and defining their cooperation
pattern(!3=1%! The resulting application is either
a new customized application or another service
with a larger granularity. CAFISE narrows the gap
between the two levels with a convergent relation.
The convergent relation helps to translate simple
and intuitive business-level elements into more con-
crete and executable elements at the software level.

CAFISE promotes a new thinking in applica-
tion assembly and adjustment. In CAFISE, what
a user perceives as applications is in fact manifes-

Real-world scenarios

Evolving
e

Approach to Enabling Adaptive Configuration of Service Grid

487

tations of the CAFISE framework acting on the
CAFISE model. Instead of seeking help from soft-
ware professionals for building applications, power
users can define application specifications by them-
selves. After a power user constructs an intuitive
application configuration from the viewpoint of his
business, the CAFISE framework helps to mani-
fest, map and interpret a corresponding software-
level model. The convergent relation plays a key
role in transforming the business-level model into
the software-level model. To present and construct
the CAFISE model, a modeling language called the
CAFISE language is proposed. Besides the model,
the language and the CAFISE framework as shown
in Fig.2, a virtual service organization (also called
service community)[16], which helps to discover, or-
ganize and manage services in a service grid, serves
as a basis of the CAFISE approach.

(re)configuring | CAFISE /" Business level
p |model model

Business services

7
d d

7>

Power

7
PSS

P4
3

7 _, Convergent
/7 relation

Abstract software
services

user

Interpreting
E—

r~Zad

Software-level model

Concrete software
L isery ices

The CAFISE framework

(© 295309 D

Fig.2. User-centric construction and adjustment of service grid applications with CAFISE.

3 CAFISE Model

3.1 Model Definitions

As shown with the dark rectangle in Fig.2, the
CAFISE model has three constituent components:
a business-level model, a software-level model and
a convergent relation. It is formally defined as a
three-tuple: M = (B, A,7) with BN A =) and
B +# (), where the meanings are as follows.

1) B = (Ba,Bs,Bg,Br,fp) represents a
business-level model, satisfying B4 # 0§, BANBs =
0, BANBg =0, BsN Bg = 0.

e B, is a finite and nonempty set of business

activities. A business activity defines what is to be
done at a business step.

e Bg is a finite set of business services. A busi-
ness service provides a set of functionalities that
can be used to accomplish a business activity. It
can be atomic or composite. While atomic busi-
ness services serve as the most elementary service
units, a composite business service aggregates mul-
tiple business services that can be either atomic or
composite. In CAFISE, an application can also be
viewed as a specific form of composite business ser-
vices.
ness services take on a uniform appearance.

To users, both atomic and composite busi-

e Bp is a finite set of business information enti-

488

ties. A business information entity corresponds to
an information resource consumed or produced by
a business activity.

e Br = {B}, B%, B3} is concerned about three
types of business relations, respectively describing
relationships between business activities, between
business activities and business services, and be-
tween business activities and business information
entities. The three types of business relations are
explained in some more detail below:

B}% C By X By defines relationships between
business activities.

B}22 C B4 x Bg associates business activities
with business services. A business activity is ful-
filled by a business service, either atomic or com-
posite.

. B% C B4 X Bpg defines relationships between
business activities and business information enti-
A business activity may have relationship
with one or more business information entities it
consumes and/or produces.

ties.

fs: 2B4 x 2Ba 5 [conditional sequence, con-
ditional split, conditional join} is a function deter-
mining routing strategies between business activi-
ties, and results in three types of control nodes con-
necting business activities. conditional sequence is
a directed link from a source business activity to a
destination business activity. The business activ-
ities are performed one by one under certain con-
ditions. Note that a source activity and a destina-
tion activity can be the same, resulting in a condi-
tional repetition. conditional split means that some
of the business activities behind this point can be
performed concurrently under certain conditions.
conditional join means that only some of business
activities before this point need to be finished un-
der certain conditions.

2) A = (As,Ac,Am, AR, 4, f4) represents a
software-level model, satisfying Ag N Ac = 0,
ASmAM:UJ, AcnNAy =0.

e Ag is a finite and nonempty set of abstract
software services. An abstract software service is
composed of functional and non-functional speci-
fications of a software service. Functional spec-
ifications describe functional constraints and in-
put/output messages, and non-functional specifi-
cations include non-functional properties and con-
straints, such as service provider’s information, ser-
vice categories, QoS information, etc.

e A is a finite set of concrete software ser-
vices. A concrete software service corresponds to
an implementation of an abstract software service
belonging to Ag. It can be a stand-alone service,

J. Comput. Sci. & Technol., July 2003, Vol.18, No.4

such as an Internet-accessible Java application, or
a composite service that consists of a set of other
services.

e Ay is a finite set of messages. A message
is composed of message type, message dispatcher,
message receiver and message body that contains
parameters and protocol-related data. Protocol-
related data mark the protocols that are used to
exchange messages.

o Ap = {AL, A%, A%} represents three types of
relationships:

A}Q C Ag x Ag defines control relationships be-
tween abstract software services, which reflect their
execution order.

A%{ C Ag x Ac associates abstract software ser-
vices with concrete software services.

An abstract software service can be associated
with one or more concrete software services. Note
that they are not necessarily bound with each other
fixedly. At runtime, it is possible to do dynamic
binding based on functional and non-functional
specifications of an abstract software service.

A?j% C Ag x A represents message relation-
ships that specify mappings between input and out-
put messages of abstract software services and also
describes the message to be exchanged between ab-
stract software services.

fi 1245 x 245 — {conditional sequence, condi-
tional split, conditional join}. This function defines
several control relationships: conditional sequence
indicates that two abstract software services linked
through it are to be invoked successively; condi-
tional split means that some of the abstract soft-
ware services behind this point can be performed
concurrently under certain conditions; conditional
join means that only some of abstract software ser-
vices before this point need to be finished.

f3 . 24s x 24% s {direct, synthesized, de-
composed} defines three types of messages: direct
means a message is directly transferred from one
abstract software service to another, synthesized
synthesizes multiple messages of several abstract
software services into one message and transfers it
to an abstract software service, and decomposed de-
composes one message of an abstract software ser-
vice into multiple messages and transfers them to
several abstract software services.

3) 7 = (F,Ru) is a convergent relation. F =
{1, 72,73,74} consists of mapping functions be-
tween business services and abstract software ser-
vices, between control logics at the two levels, be-
tween service associations and between business in-
formation entities and software messages. Ru de-

HAN Y B et al.: Approach to Enabling Adaptive Configuration of Service Grid 489

notes a set of convergent rules that contain auxil-
iary information needed to implement F'.

eo: 71 By ﬁ>A5 sets up relationships between
business activities and abstract software services.
Because a business activity is bound with a busi-
ness service according to B% and each business ser-
vice has a definite counterpart (namely an abstract
software service) in software-level models accord-
ing to our convergent rules, this function can map
between business activities and abstract software
services in a straightforward manner. Here, busi-
ness services are extracted from abstract software
services in terms of the convergent rules and take
on the business view of abstract software services.
This is the basic convergent point of the business
domain and the software domain in CAFISE.

o7 : Bk %A}% maps relationships between
business activities to control relationships between
abstract software services.

e 73: B% P, A% generates the associations be-
tween abstract software service declarations and
concrete software services based on B% as well as
rules for service abstraction and generalization.

o7, : BY ﬁ)A?I’% translates relationships be-
tween business activities and business informa-
tion entities into message relationships between ab-
stract software services. For example, if two busi-
ness information entities are produced by a busi-
ness activity X and a business activity Y respec-
tively, and consumed by a business activity Z, we
can get the synthesized message relationship be-
tween the corresponding abstract software service
x, abstract software service y and abstract software
service z. Here, the abstract software services z, y
and z can be identified through 7. The mappings
from other relationships of B3, to direct and decom-
posed relationships of A% are similar.

3.2 Constructing Convergent Models with
the CAFISE Language

To describe and reify the CAFISE model pre-
sented above, the CAFISE language is designed. It
is made up of two parts: a graphic business-level
language segment and an XML-based software-
level language segment. The convergent relation
7 is implemented by the CAFISE framework dis-
cussed later.

3.2.1 Business-Level Specification

The business-level language segment of
CAFISE, called CBL, is designed to be “user-

centric” to enable business people to make on-
demand configuration of service grid applications.
CBL intends to allow a business expert to trans-
parently examine all dispersed computational re-
sources available to him as business objects and to
configure them in an easy and straightforward man-
ner. We introduce some simple graphical symbols
for business users to draw his or her personalized
pictures of the businesses in concern. Through
draging and configuring these symbols, business
users can, to certain extent, program their “appli-
cations” quickly according to their personal needs.

Table 1. Graphical Symbols for
Business-Level Specification — CBL

Symbol Description
Business It represents a business activity,
E activity which defines what to do at a busi-
ness step.
Business Business services are organized in
@ service advance (see Fig.2) and are used to
perform business activities. Users
can choose and drag them to
set up associations with business
activities.
Conditional It links two business activities and
* sequence denotes that these activities are
performed sequentially under cer-
tain conditions.
Conditional Some of the business activities
iﬁgﬁ split behind this point can be per-
formed concurrently under certain
conditions.
Conditional Business activities before this
qu join point need to be finished only par-

tially under certain conditions.

The graphical symbols and their descriptions
are given in Table 1. Business information enti-
ties that business activities consume or produce are
specified as attributes of business activities, and
thus do not appear as stand-alone icons. A link
may be associated with a set of conditions. The
condition is defined as attributes of the link and
expressed as a Boolean expression.

3.2.2 Software-Level Specification

The software-level language segment of
CAFISE, called CSL, is expressed in XML format
so that the specifications can be exchanged eas-
ily across a wide-area network. Due to the space
limitation of the paper, we only present here some
key elements of CSL, which are listed in Table 2.
Details of a complete definition of the CAFISE lan-
guage can be found in [17].

490

Table 2. Key Elements for Software-Level
Specification — CSL

Language elements Description

(AbstractService) It denotes an abstract software
service.

(StaticBinding) It defines the access information
of a software service to be bound
to an abstract software service,
such as a pointer to a WSDL file.
It defines the policy for dynamic
service binding.

It describes functional restric-
tions of input and output mes-
sages used for binding a concrete
software service at runtime.

It describes non-functional prop-
erties of services, which can be

(DynamicBinding)

(FunRestrictions)

(NonFunRestrictions)

used to bind a concrete software
service at runtime.

It defines directed links between
abstract software services.

It establishes a sequential rela-
tionship between two abstract
software services with attribute
of conditions.

It corresponds to a conditional
split. Abstract software services
behind this link can only be exe-
cuted partially according to the
attribute of conditions.

It allows a partial join accord-
ing to the attribute of conditions
without synchronizing all previ-
ous services.

It defines messages to be ex-
changed between abstract soft-
ware services, including param-
eters and protocol-related data.
There are two types of ex-
pressions: Boolean expression
and assignment expression. A
Boolean expression can be used
to define condition attributes
of (ConditionalSequence), (Con-
ditionalSplit), and (Conditional-
Join). An assignment expression
is used to assign values to a mes-
sage. (XPath 1.0119] is used as
the expression language.)

(ControlLink)

(ConditionalSequence)

(ConditionalSplit)

(ConditionalJoin)

(Message)

(Expression)

The development of CSL benefits from
BPEL4WS8! that is an executable business pro-
cess language facilitating Web services composi-
tion. In BPEL4WS, the executable processes cor-
respond to composite services that are modeled as
a directed graph. BPEL4WS focuses on specifying
what composite services do and how they work, and
does not yet provide enough support for dynam-
ically reconfiguring the service composition when
requirements change.

In CSL, the associations between abstract soft-
ware services and concrete software services can be
defined either in advance or at runtime. With dy-

J. Comput. Sci. & Technol., July 2003, Vol.18, No.4

namic service binding, concrete software services
that implement abstract software services can be
chosen and composed at run-time. It brings along
greater flexibility to choose the most suitable ser-
vices from multiple candidates and to handle ex-
ceptions in invoking remote services. As shown in
Table 2, the language element (DynamicBinding) is
provided for specifying all necessary dynamic bind-
ing information. Since service binding policies are
relevant to domain knowledge, it is hard to define
a universally applicable set of descriptions. An ex-
tendable policy description and evaluation mech-
anism is explicitly introduced and a policy eval-
uator is provided inside the (NonFunRestrictions)
element. Through this mechanism, users can define
policies by themselves.

After having introduced the CAFISE model and
the language thereof, let us summarize the princi-
ples of CAFISE modeling as well as the usage of
the language. First, users can use the business-level
language to build business-level model on their de-
mand. They only need to drag and configure the
symbols to define their business requirements using
predefined modeling elements and rules. Based on
the resulting business-level models, software-level
models can be derived in terms of the convergent
relation 7 with the support of a predefined set of
CAFISE rules as well as the CAFISE framework
that is to be discussed in the subsequent section.
Software-level models are interpreted directly by a
core component of the CAFISE framework, called
the CAFISE virtual machine to realize the so-called
just-in-time configuration or dynamic reconfigura-
tion to meet users’ spontaneous requirements.

4 CAFISE Framework

The CAFISE framework is designed to realize
our approach and enable on-demand configuration
and dynamic reconfiguration of service grid appli-
cations. As depicted in Fig.3, the CAFISE frame-
work is composed of a set of core components and
front-end tools assisting users to configure and re-
configure service grid applications. The conver-
gent modeling environment offers power users a
means to express their requirements from business
viewpoint and transform resulting business mod-
els to configuration specifications in the CAFISE
language. The reconfiguration component takes
the responsibility for managing dynamic changes
and reconfiguring applications while applications
are still in execution. The CAFISE virtual ma-
chine provides support for the execution and final

HAN Y B et al.: Approach to Enabling Adaptive Configuration of Service Grid

adaptation of service grid applications. In the rest

Configuring

____________________ » | Application A

Convergent | Modeling

 —

. CATISE
modeling specification

component of application

A

491

Reconfiguration
component

CATISE

ﬁ Interpreting

specification

of application
Al

ﬁ Interpreting

Monitoring and

adjusting

0O O 0 O 0 Invoking

Scrvice pool

CAFISE virtual machine

Fig.3. The CAFISE framework.

of this section, we will briefly examine the adaptive
configuration process of service grid applications

with the help of the CAFISE framework.

Through the convergent modeling environment,
power users can design business-level models to ex-
press their demand in a just-in-time manner. The
graphical tool helps power users to browse the
network-based resources made available to them,
and to configure their applications by correlating
the resources and thus defining the business-level
models. The corresponding “executable” software-
level models are derived from the resulting busi-
ness models. As shown in Fig.3, power users can
use the convergent modeling component to config-
ure and reconfigure applications, which helps to get
the CAFISE-enabled application — A to be modi-

fied and evolved to a new application — A’.

The component — CAFISE virtual machine
— is responsible for interpreting the software-level
models and invoking individual services. In case
that dynamic binding mode is specified or excep-
tions arise during service invocation, the CAFISE
virtual machine needs to evaluate the most suit-
able services from possible candidates. In addition
to these main tasks, the CAFISE virtual machine
also provides the following functionalities. It helps
to maintain a meta-data space containing collec-
tions of structural and behavioral meta-data of the
“executing” applications. The concepts and tech-
niques of reflection are used to construct and main-
tain a set of meta objects that are designed for the
management of dynamic changes and reconfigura-
tion. In the past years, reflection has been one of
the most useful techniques for developing adapt-
able systems(2?!. Dynamic reconfiguration of ser-

vice grid applications can benefit from the concepts
and techniques of reflection, in particular the con-
cepts and protocols of meta objects2:22l. A meta
object protocol is a supplementary interface to con-
ventional object models. It provides an effective
means to incrementally modify the behavior and
implementation.

When changes to a business take place while its
application is running, a power user can use the
reconfiguration component to adjust the applica-
tion’s configuration to reflect the changes. The
reconfiguration component monitors the running
status of the application. Each time a power
user wants to make a reconfiguration, the compo-
nent can reproduce the business-level models and
present the most state-of-the-art status of the run-
ning application, and allow the power user to make
legal modifications through related meta object
protocols. We reify two aspects of the business-
level models of CAFISE, the structural aspect and
the behavioral aspect, to build two sorts of corre-
sponding meta objects, namely structural meta ob-
jects and behavioral meta objects respectively. A
structural meta object captures topological infor-
mation through extracting the relation among busi-
ness activities. A behavioral meta object captures
how business activities act through extracting rela-
tionships between business activities and business
services, and relationships between business activi-
ties and business information entities. At the same
time, a set of operations is defined based on these
two sorts of meta objects to support dynamic ap-
plication reconfiguration. The operations defined
on the structural meta objects are used to insert
and delete business activities, business information

492

entities as well as business services. The operations
defined on the behavioral meta objects are used to
adjust relationships between business activities and
the corresponding business information entities or
business services. Through these meta objects and
the operations, a basic ability for dynamically re-
configuring service grid applications is obtained.

5 Case Study with an Application Scenario

The CAFISE approach has been applied within
the context of a real project called FLAMEZ2008.
FLAME2008 (A Flexible Semantic Web Service
Management Environment for the Olympic Games
Beijing 2008) is a project under the Chinese Dig-
ital Olympiad Framework initiative supported by
China’s Ministry of Science and Technology and
Chinese Academy of Sciences. The project aims at
developing a service-oriented application platform,
on which an effective information system provid-
ing integrated, personalized information services to
the public can be based. In such a large-scale in-
formation system, many applications providing ser-
vices are involved and there are numerous individ-
ual requirements from various users. It requires the
information system to adapt to changing require-
ments by quickly (re)configuring different service
resources. To illustrate how the CAFISE approach
works, we use the following simplified scenario: Mr.
John Bull is a sport reporter and will come to
Beijing for interview during the Olympic Games
2008. While watching matches, making interviews
and going sightseeing, he can seek help and acquire
personalized services from this information system.
Based on his demand, the information system com-
poses dispersed services over the Internet to pro-
vide one-step information services to him. With
the support of the CAFISE approach and its sup-
porting mechanisms, John can construct his per-
sonal application in a just-in-time manner through
directly composing network-based services on his
own demand.

5.1 Just-in-Time Configuration of Service
Grid Applications

John can switch his role as a power user or
as an end user. For example, as a power user,
he may configure spontaneously his personalized
application supporting his daily schedule. As an
end user he can use the application he builds. To
build the personal application for his travel plan-
ning, he defines several business activities and their

J. Comput. Sci. & Technol., July 2003, Vol.18, No.4

relationships. The business activities are named
as order airline ticket, query match ticket, and or-
der match ticket respectively. Then, he can check
what kinds of business services are available, choose
and then drag business services to the correspond-
ing business activities to complete the specification.
The business services are abstracted and organized
based on related software services over the Inter-
net. The assemblies of business services are orga-
nized as service communities!*®! according to access
rights, preferences, and other organization princi-
ples. In this simplified scenario, the following busi-
ness services from registered software services may
be useful for him: airline ticket booking, Olympic
information inquiry service and Olympic ticket ap-
plication service. John arranges the business ac-
tivities in a certain order (using the mechanisms
defined in CBL), chooses suitable business services
and associates the chosen business services with the
business activities he defined. As such, he defines
a simple business-level CAFISE model.

The visualized view of business-level model
built with the CAFISE modeling environment is
shown in the right corner at the bottom of Fig.4.
After John’s requirements are captured in the intu-
itive way, it is the CAFISE framework’s job to de-
rive an “executable” software model. The CAFISE
framework, which implements the convergent re-
lation 7 and embodies the basic convergent rules,
translates the resulted business-level model into a
software-level CAFISE specification. The CAFISE
virtual machine can then interpret the specification
when an end user, either John or someone else, calls
the application.

Fig.4. The power user interface reflecting the business-level

view of the scenario.

HAN Y B et al.: Approach to Enabling Adaptive Configuration of Service Grid

5.2 Dynamic Reconfiguration of Service
Grid Applications against Business Changes

While using the application he built, John finds
that if he does not know the detailed event sched-
ule of match, he cannot inquire match tickets con-
veniently. If he knows the match schedule before
querying match ticket, this problem can be solved.
So, he may want to adjust the application accord-
ing to his new demand at runtime. With CAFISE,
John, as a power user, can reconfigure his applica-
tion dynamically. He may insert and configure a
new business activity (get match schedule, for ex-
ample), before the business activity query match
ticket, with the reconfiguration tool. Among pos-
sible candidates offering schedule information, the
most suitable business service can be chosen ac-
cording to a flexible scheme for service selection to
fulfill this business activity. Fig.5 illustrates the ad-
justment process of business-level model. Then, the
software-level specification is altered automatically
to reflect the changes. The CAFISE framework
will check and verify the validity of the changes.
Finally, the CAFISE virtual machine will continue
interpreting and executing the changed specifica-
tion.

rllrreewli
¢ EEEE

» ¥ F
R x
T v

& '
B0 A s ;=

Fig.5. An example of business-level model adjustment.

6 Concluding Remarks

Since a service-grid-based application is sub-
ject to just-in-time construction and changes, how
to make a service-grid-based application user-
configurable becomes a challenging issue. Based
on an integrated model that relates some key el-
ements of a business-level design issues and their
counterparts in the software domain in convergent

493

way, CAFISE promotes the metaphor of user-end
programming and enables demand-driven and user-
centric configuration of service grid applications.
The development of CAFISE is guided by a num-
ber of real-world scenarios to highlight its practical
usefulness. The approach and the CAFISE frame-
work are used in the FLAME2008 project to allow
a business expert to transparently examine all scat-
tered resources that are accessible and available to
him or her and to configure and reconfigure them
in an easy and straightforward manner.

In FLAME2008, we focus on the issues of
service composition and dynamic service bind-
ing in the software-level CAFISE model. As a
future work, we will extent the mechanisms to
cover service deployment and service-level inter-
actions. Also, the convergent relation between
business-level models and the software-level mod-
els in FLAME2008 is straightforward to some ex-
tent. At present, the convergent rule set Ru men-
tioned in Section 3 takes into consideration some
predefined business rules and some basic relation-
ships between business-level models and software-
level models in a fixed manner. Constructing and
leveraging a fully-fledged and easily maintainable
rule set are one of the most important goals of our
undergoing research work. The CAFISE approach
is based on a grid-oriented resource organization.
Though we did not discuss issues of resource or-
ganization in details in the paper, methodological
and tool supports for the service community men-
tioned earlier are among the key research themes
of our research group.

References

[1] Foster I, Kesselman C. The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman Publish-
ers, July 1998.

[2] Foster I, Kesselman C, Tuecke S. The anatomy of the
grid: Enabling scalable virtual organizations. The
International Journal of Supercomputer Applications,
2001, 15(3): 200-222.

[3] Reinefeld A, Schintke F. Concepts and technologies for a
worldwide grid infrastructure. In Euro-Par 2002 Paral-
lel Processing, Lecture Notes in Computer Science 2400,
Springer, 2002, pp.62-71.

[4] Weissman J B, Lee B. The service grid: Supporting scal-
able heterogeneous services in wide-area networks. In
Proc. Symp. Applications and the Internet, San Diego,
CA, January 2001, pp.95-104.

[5] Kramer J. Configuration programming — A framework
for the development of distributable systems. In Proc.
IEEE International Conference on Computer Systems
and Software Engineering (COMPEURO 90), Tel-Aviv,
Israel, May 1990, pp.374-384.

[6] Lim A S. Abstraction and composition techniques for

494

(17]

[18

(19]

(20]

reconfiguration of large-scale complex applications. In
Proc. the 3rd International Conference on Configurable
Distributed Systems, Annapolis, Maryland, USA, May
1996, pp.186—-193.

Oreizy P, Gorlick M, Taylor R N et al. An architecture-
based approach to self-adaptive software. IEEE Intelli-
gent Systems, 1999, 14(3): pp.54-62.

Oreizy P, Taylor R N. On the role of software architec-
tures in runtime system reconfiguration. In Proc. the
4th Int. Conf. Configurable Distributed Systems, IEEE
Computer Society Press, Annapolis, Maryland, USA,
May 1998, pp.61-70.

Shrivastava S K, Wheater S M. Architectural support
for dynamic reconfiguration of large scale distributed
applications. In the 4th Int. Conf. Configurable Dis-
tributed Systems (CDS’98), Annapolis, Maryland, USA,
May 4-6, 1998, pp.10-17.

Warren I, Sommerville I. A model for dynamic config-
uration which preserves application integrity. In Proc.
the 3rd Int. Conf. Configurable Distributed Systems,
IEEE Computer Society Press, Annapolis, maryland,
USA, May 1996, pp.81-88.

Taylor D. Business Engineering with Object Technology.
John Wiley & Sons, 1995.

Hubert R. Convergent Architecture: Building Model-
Driven J2EE Systems with UML. New York: John Wi-
ley & Sons, 2002.

Singh M P. Physics of service composition. IEEFE Inter-
net Computing, May & June 2001, pp.6—7.

Kiciman E, Melloul L L, Fox A. Towards zero-code ser-
vice composition. In Proc. the Eighth Workshop on Hot
Topics in Operating Systems (HotOS VIII), Germany,
2001, p.172.

Casati F, Ilnicki S, Jin L et al. Adaptive and Dy-
namic Service Composition in eFlow. HP Labs Tech-
nical Report, HPL-200039, Software Technology Labo-
ratory, Palo Alto, CA, March 2000.

Benatallah B, Dumas M, Sheng Q Z, Ngu A H H. Declar-
ative composition and peer-to-peer provisioning of dy-
namic web services. In Proc. the Int. IEEE Conf. Data
Engineering, San Jose, USA, February 2002, pp.297—
308.

CAFISE group. CAFISE Language Specification. Tech-
nical Report, Software Division, ICT of CAS, 2002.
BPEL4WS (Business Process Execution Language for
Web Services), Version 1.1. http://www-106.ibm.com/
developerworks/webservices/library /ws-bpel/, 2003.
XPath 1.0. http://www.w3.org/TR/1999/REC-xpath-
19991116, 1999.

Maes P. Concepts and experiments in computation re-
flection. ACM SIGPLAN Notices, Dec. 1987, 22(12):
147-155.

Kickzales G, Rivieres J, Bobrow D G. The Art of the
Metaobject Protocol. MIT Press, Cambridge, Mas-
sachusetts, 1991.

Edmond D, Hofstede A T. Achieving workflow adapt-
ability by means of reflection. In Proc. the ACM Conf.
Computer Supported Cooperative Work (Workshop on

J. Comput. Sci. & Technol., July 2003, Vol.18, No.4

Adaptive Workflow Systems) CSCW’98, Seattle, Nov.
1998, available at http://ccs.mit.edu/klein/cscw98/.

HAN YanBo is a professor of the Institute of
Computing Technology, the Chinese Academy of Sci-
ences. He holds the Ph.D. degree received from the
Technical University of Berlin, Germany. His current
research interests are middleware and software integra-
tion technologies, service-oriented computing, and soft-
ware engineering of Internet-based applications.

ZHAO ZhuoFeng is a Ph.D. candidate at the In-
stitute of Computing Technology, the Chinese Academy
of Sciences. His research interests are service compo-
sition, service-oriented application and workflow tech-
nologies.

LI Gang received his Ph.D. degree in computer
science from the Beijing University of Aeronautics and
Astronautics. He is a research assistant of ICT, the
Chinese Academy of Sciences.
are service-oriented grid computing, adaptive software
architecture and software evolution.

His research interests

XING DongShan received his Ph.D. degree in
computer theory and application from Xi’an Jiaotong
University. He is a post-doc research assistant at ICT,
the Chinese Academy of Sciences. His research inter-
ests are web mining and software evolution.

LV QingZhong is a Ph.D. candidate at the In-
stitute of Computer Engineering, Beijing University of
Aeronautics and Astronautics.
are software engineering, knowledge representation and
ontology, and semantics enabled web services.

His research interests

WANG JianWau is a Ph.D. candidate at the Insti-
tute of Computing Technology, the Chinese Academy
of Sciences. His research interests are service-oriented
application, workflow technologies and service grids.

XIONG JinHua is an associate professor of
the Institute of Computing Technology, the Chinese
Academy of Sciences.
are software integration technologies, service-oriented
computing, and business-modeling technologies.

His current research interests

LIU Hao is a Ph.D. candidate at the Institute of
Computing Technology, the Chinese Academy of Sci-
ences. His research interests are software integration,
software architecture and workflow technologies.

